西门子V90高惯量电机6FX3002-5CL02-1AF0

2023-09-09  |  来源:互联网 166浏览
摘要: 西门子V90高惯量电机6FX3002-5CL02-1AF0 <p>  </p><p> 西门子S7-200PLC有哪些扩展模块。该怎么用。1.2.2扩展模块S7-200扩展模块非常丰富,主要有数字量模块,模拟量模块,运动控制模块和通讯模块,另外,CPU扩展卡插槽内可扩展存储卡或电池卡或时钟电池卡,西门子S7-200PLC有哪些扩展模块。 </p><p>  扩展

 

 西门子S7-200PLC有哪些扩展模块。该怎么用。1.2.2扩展模块S7-200扩展模块非常丰富,主要有数字量模块,模拟量模块,运动控制模块和通讯模块,另外,CPU扩展卡插槽内可扩展存储卡或电池卡或时钟电池卡,西门子S7-200PLC有哪些扩展模块。

  扩展模块数字量模块数字量模块分为:数字量输入模块EM221,数字量输出模块EM222和数字量输入/输出模块EM223。数字量模块有各种点数可选,如16点输入,8点输出,32输入/32输出等等,可根据实际需要选择。

  对于输入模块,分为24VDC输入和120/230VAC输入;输出模块分为晶体管输出,继电器输出和可控硅输出。在选型的时候,除了要计算数字量输入输出的点数以外,还要分清楚输入输出的类型。模拟量模块模拟量模块分为:模拟量输入模块EM231,模拟量输出模块EM232,模拟量输入/输出模块EM235,其中模拟量输入模块包含了普通模拟量模块(电流/电压),热电阻模块和热电偶模块。

  同数字量模块,模拟量模块有各种点数可选,如4点输入,2点输出,4点输入/1点输出等等,可根据实际需要选择。按模拟量信号类型分,分为电流,电压,热电阻(输入)和热电偶(输入)。在选型的时候,除了要计算模拟量输入输出的点数以外,还要分清楚输入输出信号类型。

  运动控制模块晶体管输出类型的S7-200CPU集成了两路高速脉冲输出,可以作运动控制。除此以外,还可扩展专门的运动控制模块EM253。EM253是一个单轴的开环运动控制模块,输出高频率达200KHz,支持**定位,相对定位,回参考点等功能,集成急停,限位,参考点开关等I/O点。

 变频器究竟是过载还是过热,这样区别变频器变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器在工作中为保护设备安全运行,会设置电流越限(过流)保护和过载越限保护。

  当发生越限时自动采取相应的措施,如报警或停机。变频器究竟是过载还是过热,这样区别过流过流指电机(变频器输出)的电流超过规定值;过载指电机的负载超过电机的额定功率。过流和过载的产生主要原因都是电机超载。之所以要分为两个指标,原因在于:1、两者保护的对象不同。

  过电流主要用于保护变频器,而过载主要用于保扩电动机。因为变频器的容量通常会比电动机的容量加大一些。在这种情况下,电动机过载时,变频器不一定过电流。2、电流的变化率不同。过载保护发生在生产机械的工作过程中,电流的变化率通常较小:除了过载以外的其它过电流,常常带有突发性,电流的变化率往往较大。

  3、保护的方式不同。过载保护具有反时限特性。过载保护主要是防止电动机过热,故具有类似于热继电器的“反时限”特点。就是说,如果与额定电流相比,超过得不多,则允许运行的时间可以长一些,但如果超过得较多的话,允许运行的时问将缩短。

  此外,由于在频率下降时,电动机的散热状况变差。所以,在同样过载50%的情况下,频率越低则允许运行的时问越短;过流主要是防止变频器的电子元件损坏,这种损坏发生的速度*快,一旦过流需要立即采取措施。由此可见,仅从设备负载变化的角度看:流越限的原因是电机短时间严重过载或其它因素导致;过载越限的原因是会导致电机温升超标的过载。

  直流电机和交流电机的工作原理和区别工作原理:1.直流电源电流顺着电源正*流到了左边的电刷上面,电刷和换向器相互摩擦,电流经过左边的换向器(也叫换向片,这个电机有左右两个换向片)流进线圈,从线圈的右边流出来,经过右边的换向片和右边的电刷流回到电源的负*,形成了闭合回路。

 三、备件的更换变频器由多种部件组成,其中一些部件经长期工作后其性能会逐渐降低、老化,这也是变频器发生故障的主要原因,为了保证设备长期的正常运转,下列器件应定期更换:1、冷却风扇变频器的功率模块是是发热严重的器件,其连续工作所产生的热量必须要及时排出,一般风扇的寿命大约为10kh~40kh。

  按变频器连续运行折算为2~3年就要更换一次风扇,直接冷却风扇有二线和三线之分,二线风扇其中一线为正*,另一线为负线,更换时不要接错;三线风扇除了正、负*外还有一根检测线,更换时千万注意,否则会引起变频器过热报警。

  另外,有条件的可对滤波后的直流波形、逆变输出波形及输入电源谐波成分进行测定。交流风扇一般为220V、380V之分,更换时电压等级不要搞错。2、滤波电容中间直流回路滤波电容:又称电解电容,其主要作用就是平滑直流电压,吸收直流中的低频谐波,它的连续工作产生的热量加上变频器本身产生的热量都会加快其电解液的干涸,直接影响其容量的大小。

  正常情况下电容的使用寿命为5年左右。建议每年定期检查电容容量一次,一般其容量减少20%以上应更换新的滤波电容器。变频器应用,变频器维修专业知识摘要:�F阶段,随着社会的发展,现代化建设的发展也突飞猛进。受国有工业现代化不断发展的影响,工业生产进程中所应用到的自动化设备日益丰富,变频器也随之被广泛用于生产。

  为达到提高生产安全性和稳定性,增加生产效益的目的,必须重视变频器的应用,及时检测变频器,不间断维护变频器。关键词:变频器;应用;检测维护1.变频器的应用1.1关于变频器的选型一般情况下,变频器有两种型号,一种是G型,一种是P型,恒转矩的是G型,平方转矩的是P型。

  变频器型号的选择,必须由负载类型决定。通常情况下,机械、设备生产线等的负载指恒转矩(G型)负载;一般风机、水泵类负载指平方转矩(P型)负载。事实上,有些品牌变频器直接将水泵类负载划分成一个系列,只需区分型号和通用类型,方便用户直接按照负载类型选择变频器。

  市面上G/P型合一的变频器占多半,G型比P型要小一个功率段。变频器的安装条件选择变频器的安装条件时,应注意环境温度、湿度、安装场所和安装位置等问题。**,环境温度要求。变频器在环境温度-10~40℃正常运转,而在40~50℃必须要降额运用。

  变频器安装**要考虑振动<5.9m/s2(0.6g)的地方;其次,要避开安装在阳光直射的地方,绕开多尘埃、多金属粉末的地方;再次,严禁安装在有腐蚀性、性气体的地方;后,海拔高度应<1000m,当海拔高度≥1000m必须降额运用,降额随海拔的升高而降低,海拔每上升100m降额1%。

 PLC学习四步走,快速上手PLC编程**我们要知道要会使用PLC应该学习些什么,**步就是要知道PLC的硬件组成,比如它的输入输出口端子、电源端子、接地端子、下载端口、程序运行开关、PLC指示灯的意义等。

  有的PLC还有工业以太网接口这些都要了解。第二步就是要学会熟练操作PLC的编程软件,学会用软件建立项目、编写程序、调试程序、下载程序,现在的PLC大多都有软件仿真功能,可以学如何进行软件仿真。第三步要熟悉系统指令和程序的结构,比如FX系列的PLC基本指令有27条、功能指令有上百条。

  我们要先学会基本指令,然后一条条地攻克功能指令。终能达到理解用户程序、编写用户程序。第四步要有学习PLC的工具,目前来说PLC硬件贵一些,我们可以通过软件仿真功能学习,这些功能强大的仿真软件都支持PLC的绝大部分指令。

  我们完全可以在PLC入门阶段用仿真软件学习。通过仿真软件的学习,我们可以学到基本指令的输入、修改、下载、调试等基本技能。常用弱电信号电缆传输距离汇总讲解线缆传输的距离一直是弱电人关注的问题,我们每天都在与线缆打交道,清楚了解线缆的使用才能在项目中得心应手,本期我们一起来了解下常用的线缆传输距离。

  网线网线也就是双绞线,根据不同规格的网线有不同的传输距离。网线在传输网络信号,如果超出了网线本身可以承受的距离,信号就会衰减,严重时,网络信号会中断。五类,六类都是100米,无氧铜6类线可以达到120米左右,如果要加大传输距离,在两段双绞线之间可安装中继器,可安装4个中继器。

  如安装4个中继器连接5个网段,则传输距离可达500m。光纤网线的传输距离有限,并不能解决远距离数据传输,那么对于远距离传输可以使用光纤。光纤分为多模与单模,多模传输的距离比网线远,但又比单模短。在10mbps及100mbps的以太网中,多模光纤可支持2000米的传输距离;而于1GbpS千兆网中,多模光纤可支持550米的传输距离;所以多模现在用的比较少了。

  单模光纤相比于多模光纤可支持更长传输距离,在100Mbps的以太网以至1G千兆网,单模光纤都可支持超过5000m的传输距离。单模光模块中使用的器件是多模光模块的两倍,所以单模光模块的总体成本要高于多模光模块;单模光模块的传输距离可达150至200km。

 2、所有的电气设备和电器元件都按其所在的实际位置绘制在图纸上,且同一电器的各元件根据其实际结构,使用与电路图相同的图形符号画在一起,并用点画线框上,其文字符号以及接线端子的编号应与电路图中的标注一致,以便对照检查接线。

  主要用于安装接线、线路的检查维修和故障处理。1、接线图中一般示出如下内容:电气设备和电器元件的相对位置、文字符号、端子号、导线号、导线类型、导线截面、屏蔽和导线绞合等。3、接线图中的导线有单根导线、导线组(或线扎)、电缆等之分,可用连续线和中断线来表示。

  凡导线走向相同的可以合并,用线束来表示,到达接线端子板或电器元件的连接点时再分别画出。在用线束表示导线组、电缆等时可用加粗的线条表示,在不引起误解的情况下也可采用部分加粗。另外,导线及套管、穿线管的型号、根数和规格应标注清楚。

  电气设备使用的电气接线图是用来组织排列电气设备中各个零部件的端口编号以及该端口的导线电缆编号,同时还整理编写接线排的编号,以此来指导设备合理的接线安装以及便于日后维修电工尽快查找故障电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机、电器、线路之间的电气接线;由电气。

  五、电气接线图应按以下要求绘制1)电气接线图中的电气元件按外形绘制(如正方形、矩形、圆形或它们的组合),并与布置图一致,偏差不要太大。器件内部导电部分(如触点、线圈等)按其图形符号绘制。2)在接线图中各电器元件的文字符号、元件连接顺序、接线号都必须与原理图一致。

  接线号应符合GB《电器接线端子的识别和用字母数字符号标志接线端子的通则》3)与电气原理图不同,在接线图中同一电器元件的各个部分(触头、线圈等)必须画在一起。4)除大截面导线间,各单元的进出线都应经过接线端子板,不得直接进出。

  端子板上各接点按接线号顺序排列,并将动力线、交流控制线、直流控制线分类排列。5)接线图中的连接导线与电缆一般应标出配线用的各种导线的型号,规格、截面积及颜色要求。1、单元接线图单元接线图是表示电气单元内部各项目连接情况的图,通常不包括单元之间的外部连接,但可给出与之有关的互连接线图的图号。

1.直接启动。2.降压启动:降压启动有很多种,例如星三角启动;串电阻/电抗启动;软启动等等。3.变频启动。三.不同启动方式考虑的因素是什么。在这么大电流和这么长的时间内,低压配电系统会产生一定的电压降,如果电压降过大,低于接触器的线圈吸合电压,那么整个系统的电机会全部跳停;再者电压过低也影响其他设备的正常运行。

  所以选择电机启动方式的首要因素就是系统的电压降,如果系统的容量相对足够大,电压降可以忽略。但是我们的系统容量不可能设计成无限大,每个低压配电室的变压器容量就决定了电机的启动方式。四.变压器容量(系统熔炼)与电机启动方式的关系电机是否可以直接启动,可有下列经验公式来验证:多少千瓦的电机可以直接启动。

  怎么算出来的。其中IQ为电机启动电流;In为电机的额定电流;C为系数,电源总容量与电机总容量之比。所以1000KVA变压器系统下,110KW电机可以直接启动。为了正确理解控制系统的意义,有一些关于控制的术语是必须要了解的,在这里介绍一下。

  I/O点:电气工程师必须理解的几个专业术语在讨论控制系统的时候,I/O点是经常听到的一个术语。它是指输入/输出点,I代表INPUT,指输入,O代表OUTPUT,指输出。输入/输出都是针对控制系统而言,输入指从仪表进入控制系统的测量参数,输出指从控制系统输出到执行机构的参量,一个参量叫做一个点。

  一个控制系统的规模有时按照它大能够控制的I/O点的数量来定的。模拟量和开关量:在控制系统中,另一个常见的术语就是模拟量和开关量。不论输入还是输出,一个参数要么是模拟量,要么是开关量。模拟量指控制系统量的大小是一个在一定范围内变化的连续数值,比如温度,从0-100度,压力从0-10MPA,液位从1-5米,电动阀门的开度从0-****,等等,这些量都是模拟量。

 一、1平方电线可以负荷多少瓦一个电工常用的“经验公式”:只要是铜芯电线,每平方毫米的截面积可以安全通过4--**的额定电流;在220V单相电路中,每1KW的功率,其电流约为4.**左右;在380V三相平衡电路中,每1KW的功率,其电流约为2A左右。

  这三种气动元件都是采用压缩空气作为传输信号或执行机制的动力。在工厂中,由于压缩空气容易获得,干净、无污染,又安全,控制的功能和设计都十分简单,因此,现在许多生产线上采用气动工具。上面的这些值,可用物理计算公式算下来的结果是很接近的,所以电工在工作中,为了不去记那些“繁琐”的计算公式,就记住这些就可以了。

  那么根据这个算法就知道:每1平方毫米截面积的铜芯线,如果用于220V单相电路中,则可以安全承载1KW的负载所通过的电流;如果用在三相平衡负载(比如电动机)电路中,则可以安全承载2.5KW负载所通过的电流。

  二、1.5平方电线可以负荷多少瓦如果电源线是铜芯线,一是明线安装大允许工作电流是20A,即4400瓦;二是暗装套钢管,电流是16A,功率为3520瓦;三是pvc管暗装,电流是14A,那么功率为3000瓦。

  三、2.5平方电线可以负荷多少瓦2.5平方电线丞受倒多少千瓦电力,国标GB4706.1-1992/1998规定的电线负载电流值,铜芯电线2.5平方毫米16A~2**约5500瓦,铝芯电线2.5平方毫米13A~20A约4400瓦220VAC电压长时间不超过10A标准绝大部分时间不超过1**算安全。

  四、4平方电线可以负荷多少瓦单相电源1KW约是4.**,8KW约是36A。4平方电线(独根的塑铜线)载流量约是30A,小一些,换6平方线(单跑电源).你的表和闸都必须换大的。不用这么大功率吧,小4KW,也可以的。

  4平方电线丞受倒多少千瓦电力那要看你是家庭220v用电还是工厂380v的了要是220的4平方电线可以负荷6到8个千瓦。五、6平方电线可以负荷多少瓦6平方电线可以负荷多少千瓦。电力线径和输送的功率没有直接联系,一般来说6平方的导线用作空调线绰绰有余了。

电机参数的输入变频器的参数输入项目中有一些是电机基本参数的输入,如电机的功率、额定电压、额定电流、额定转速、*数等。这些参数的输入非常重要,将直接影响变频器中一些保护功能的正常发挥,一定要根据电机的实际参数正确输入,以确保变频器的正常使用。

  变频器干扰的常见现象1.换热站变频器一开,压力变送器就乱跳;2.用变频器控制供水当中,压变作为采集压力的信号,压变受变频器干扰;3.当变频器启动电机时,压变信号不稳,跳动厉害;4.压变(4-20mA)在变频器启动后乱跳,而附近的一体化热电阻(4-20mA)却不受影响,信号线都没有屏蔽;出现这些现象,。

  业控制变频器干扰问题的四种解决方案在现场,变频器的干扰问题出现的比较多,且比较严重,甚至导致控制系统无法投入使用,这一直是个很让人的问题,今天小编就和大家聊聊要如何处理变频器的干扰问题。为什么变频器会产生干扰。

  **,大家应该知道变频器是用来改变频率的。变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。

  这种工作原理会导致以下三种电磁干扰:1、谐波干扰整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多仪表形成干扰,常见的电压畸变是正弦波的顶部变平。

  2、射频传导发射干扰由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高频成分,形成射频干扰,这种干扰的特征是会对使用同一个电网的仪表形成干扰,而与仪表与变频器之间的距离无关。

1、变频器要采用单点接地,好是短而粗的线进行接地;2、传感器的信号线,采用双脚屏蔽线,并将屏蔽层用电缆夹进行接地。3、在传感器的电源上加装电源滤波器、滤波磁环,或者是隔离器等进行隔离。频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。

  其控制方式经历了以下四代。1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出大转矩减小。

  另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

  因此人们又研究出矢量控制变频调速。电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。

  经实践使用后又有所改进,即引入频率补偿,能速度控制的误差;通过反馈估算磁链幅值,低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

  矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比。

  其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。

  然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。直接转矩控制(DTC)方式1985年,德国鲁尔大学的DePenbrock教授提出了直接转矩控制变频技术。

变频器调试必设参数有哪些。控制意义是什么。变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。

  因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。01加减速时间加速时间就是输出频率从0上升到大频率所需时间,减速时间是指从大频率下降到0所需时间。

  通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。

  加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出佳加减速时间。

  02转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。

  对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。03电子热过载保护本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。

绕线型电机在启动时通过滑环给转子绕组通电,形成转子磁场,与旋转的定子磁场相对运动,因此获得转矩更大。且在启动过程中串联水电阻来降低启动电流,水电阻由成熟的电控装置控制随启动过程改变阻值。适用于轧机、提升机等负载。

  由于绕线型异步电机相对鼠笼型电机增加了滑环、水电阻等,在整体设备价格上有一定提高。其与直流电机相比,调速范围较为狭窄且转矩相对较小,相应价值也低。然而异步电机由于给定子绕组通电建立旋转磁场,而绕组属于电感性元件不做功,要从电网中吸收无功功率,对电网冲击很大。

  直观体验有大功率电感性电器接入电网时,电网电压下降,电灯亮度一下都降低。因此供电局对异步电动机的使用会有所限制,这也是很多工厂必须考虑的地方。部分用电大户如钢厂、铝厂等,选择建立自备电厂,形成自己独立的电网,以减免对异步电动机的使用限制。

  3、同步电动机同步电动机的优点除了过励状态可以补偿无功功率外,还包括1)同步电动机的转速严格遵守n=60f/p,可以精确控制转速;2)运行稳定性高,当电网电压突然下降,其励磁系统一般会强行励磁,保证电动机运行稳定,而异步电动机转矩(与电压平方成正比)则会大幅下降;3)过载能力比相应异步电动机大;4)。

  所以异步电动机如果要满足大功率负载使用,需配备无功功率补偿装置,而同步电动机则可通过励磁装置向电网提供无功功率,功率越大同步电动机的优势就越明显,由此产生了同步电动机的舞台。同步电动机无法直接启动,需要异步启动或变频启动。

  异步启动指同步电动机在转子上装有类似于异步电机笼式绕组的启动绕组,在励磁回路中串接约为励磁绕组电阻值10倍的附加电阻来构成闭合电路,把同步电动机的定子直接接入电网,使之按异步电动机启动,当转速达到亚同步转速(95%)时,再切除附加电阻的启动方式;变频启动不多赘述。

  所以同步电动机缺点之一是需要为启动增加额外的设备装置。同步电机是靠励磁电流运行的,如果没有励磁,电机就是异步的。励磁是加在转子上的直流系统,它的旋转速度和*性与定子是一致的,如果励磁出现问题,电动机就会失步,调整不过来,触发保护“励磁故障”电动机跳闸。

允许运行电压电容器对电压十分敏感,因电容器的损耗与电压平方成正比,过电压会使电容器发热严重,电容器绝缘会加速老化,寿命缩短,甚至电击穿。因此,电容器装置应在额定电压下运行,一般不宜超过额定电压的1.05倍,高运行电压不宜超过额定电压的1.1倍。

  当母线超过1.1倍额定电压时,须采取降温措施。3、谐波问题由于电容器回路是一个LC电路,对于某些谐波容易产生谐振,易造成高次谐波,使电流增加和电压升高。且谐波的这种电流对电容器非常有害,*容易使电容器击穿引起相间短路。

  因此,当电容器在正常工作时,在必要时可在电容器上串联适当的感抗值的电抗器,以限制谐波电流。4、继电保护问题继电保护主要由继电保护成套装置实现,目前国内几个知名电气厂家生产的继电保护装置技术都已经非常成熟,安全稳定、功能强大。

  主要的电容器继电保护措施有:①三段式过流保护;②为防止系统稳态过压造成电容器损坏而设置的过电压保护;③为避免系统电源短暂停投引起电容器瞬时重合造成的过电压损坏而设置的低电压保护;④反映电容器组中电容器的内部击穿故障而配置的不平衡电压保护、不平衡电流保护或三相差电压保护。

  主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压*性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至。

  继电保护装置可以有效的切除故障电容器,是保证电力系统安全稳定运行的重要手段。5、合闸问题电容器组禁止带电重合闸。所以,电容器组再次合闸时,必须在断路器断开3min之后才可进行。因此,电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。

  一些终端变电站往往配置有备用电源自动投切装置,装置动作将故障电源切除,然后经过短暂延时投入备用电源,在这个过程中,如果电容器组有低压自投切功能,那么电容器组将在短时间内再次合上,这就会发生以上所说的故障。

变频器通过编码器实现闭环控制的原理变频器带编码器的闭环控制:变频控制闭环,主要是指速度闭环。速度反馈及时反馈的信息可以计算实际转速并导算反电动势与驱动电流的匹配,从而保护电机和驱动器。变频频电机的速度闭环反馈,大约有三种模式:1,霍尔传感器,在电机转径上大部分是三个霍尔传感器,反馈三相位置变化。

  由于传感器对电机一周的提供信息有限,速度精度低,在低速时很难分辨。2,所谓无传感器的技术----利用线圈转起来,自感应反电动势。但是在启动到低速过程中反电动势较弱,如果感应电路本底阻抗在,这种微弱的感应被“吃掉”,低速时实际获得反馈很不稳定。

  根据上述描述,可见变频器(尤其是矢量变频)带编码器主要是在低速启动时的效果,可以精细化计算驱动电流,防止电流过小驱动力不够(没有转速),或者因为堵转电机失速,反电动势不够而驱动电流过流,容易烧毁器件或电机。

  3,旋转编码器,较高的分辨率(例如每圈1024个脉冲),可获得较高的速度精度,尤其是在启动到低速时精度高。上述情况在起重启升类电机尤为重要,防止变频器为保护电机失速而溜钩,所以起重启升类变频器必须加装编码器。

  另外,变频器有的加装了PG卡的位置闭环模式,编码器反馈给具有位置控制功能的变频器(PG卡)做位置闭环控制,或者编码器信号给PLC,PLC给指令变频器减速和制动做位置闭环控制,这时我建议需要用**值编码器。

  注意一下矢量变频的手册内容,一般有编码器反馈的,低速可做到很低。变频电机节能一直是一个讨论的话题,电机从启动到低速到正常运动,往往启动过流设计,并在低速时因反电动势很低,要有外部阻抗来匹配,实际上这就消耗了大量能耗在外部阻抗上。

  编码器的推广使用,可精细化驱动电流,减少这部分损耗。有人计算过,全球40%以上的电能用于电机,而启动时的能耗占比大,如果电机都能在启动时实现高效节能启动,相当于可多出多个福岛核电站。所以,变频器编码器闭环应该是个趋势。

注意:以上内容来源互联网,不代表作者观点,如有侵权风险,请联系网站管理员进行下架处理,谢谢您的配合